3.21.40 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\) [2040]

Optimal. Leaf size=48 \[ \frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}} \]

[Out]

2/5*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c/d/(e*x+d)^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \begin {gather*} \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(5*c*d*(d + e*x)^(5/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{5 c d (d+e x)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 37, normalized size = 0.77 \begin {gather*} \frac {2 ((a e+c d x) (d+e x))^{5/2}}{5 c d (d+e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2))/(5*c*d*(d + e*x)^(5/2))

________________________________________________________________________________________

Maple [A]
time = 0.80, size = 42, normalized size = 0.88

method result size
default \(\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d x +a e \right )^{2}}{5 \sqrt {e x +d}\, c d}\) \(42\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}{5 d c \left (e x +d \right )^{\frac {3}{2}}}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/5*((c*d*x+a*e)*(e*x+d))^(1/2)/(e*x+d)^(1/2)*(c*d*x+a*e)^2/c/d

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 44, normalized size = 0.92 \begin {gather*} \frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d x e + a^{2} e^{2}\right )} \sqrt {c d x + a e}}{5 \, c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*x*e + a^2*e^2)*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

Fricas [A]
time = 2.27, size = 76, normalized size = 1.58 \begin {gather*} \frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d x e + a^{2} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{5 \, {\left (c d x e + c d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*x*e + a^2*e^2)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)/(c*d*x*e +
 c*d^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**(3/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 244 vs. \(2 (44) = 88\).
time = 0.89, size = 244, normalized size = 5.08 \begin {gather*} -\frac {2}{15} \, {\left (c d {\left (\frac {{\left (5 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a e^{3} - 3 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}}\right )} e^{\left (-2\right )}}{c^{2} d^{2}} + \frac {3 \, \sqrt {-c d^{2} e + a e^{3}} c^{2} d^{4} - \sqrt {-c d^{2} e + a e^{3}} a c d^{2} e^{2} - 2 \, \sqrt {-c d^{2} e + a e^{3}} a^{2} e^{4}}{c^{2} d^{2}}\right )} e^{\left (-2\right )} - 5 \, a {\left (\frac {{\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} e^{\left (-1\right )}}{c d} + \frac {\sqrt {-c d^{2} e + a e^{3}} c d^{2} - \sqrt {-c d^{2} e + a e^{3}} a e^{2}}{c d}\right )}\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

-2/15*(c*d*((5*((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(5/2))*
e^(-2)/(c^2*d^2) + (3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e +
a*e^3)*a^2*e^4)/(c^2*d^2))*e^(-2) - 5*a*(((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*e^(-1)/(c*d) + (sqrt(-c*d^2
*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d)))*e^(-1)

________________________________________________________________________________________

Mupad [B]
time = 0.78, size = 62, normalized size = 1.29 \begin {gather*} \frac {\left (\frac {4\,a\,e\,x}{5}+\frac {2\,c\,d\,x^2}{5}+\frac {2\,a^2\,e^2}{5\,c\,d}\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\sqrt {d+e\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(3/2),x)

[Out]

(((4*a*e*x)/5 + (2*c*d*x^2)/5 + (2*a^2*e^2)/(5*c*d))*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(d + e*x)^
(1/2)

________________________________________________________________________________________